

neurol Documentation

[image: neurol logo]
Welcome! neurol is a python package for implementing Brain-Computer Interfaces in a modular manner. With the help of tools in the package, you will be able define the behavior of your intended BCI and easily implement it. A neurol BCI is defined by a number of components:

	A classifier which decodes brain data into some kind of ‘brain-state’

	An action which provides feedback depending on the decoded ‘brain-state’

	An optional calibrator which runs at startup and modifies the operation of the BCI

	An optional transformer which transforms the current buffer of data into the form expected by the classifier

The neurol BCI manages an incoming stream of brain data and uses the above user-defined functions to run a brain-computer interface.

The package includes generic utility functions to aid in creating the classifier’s, transfromer’s, and calibrator’s for common BCI use-cases. It also comes prepackaged with a growing list of trained machine learning models for common BCI classification tasks.

Contents:

	neurol package
	neurol.models subpackage

	neurol.BCI module

	neurol.BCI_tools module

	neurol.plot module

	neurol.connect_device module

	neurol.streams

Installation

neurol can be easily installed using pip:

$ pip install neurol

Indices

	Index

	Module Index

	Search Page

neurol package

neurol.models subpackage

	neurol.models.classification_tools module

	neurol.models.data_exploration module

	neurol.models.model_tools module

	neurol.models.preprocessing module

neurol.BCI module

Module implementing a general Brain-Computer Interface which manages
and incoming stream of neural data and responds to it in real-time.

	
class neurol.BCI.generic_BCI(classifier, transformer=None, action=<built-in function print>, calibrator=None)

	Bases: object

Implements a generic Brain-Computer Interface.

Internally manages a buffer of the signal given in stream and
continuously performs classification on appropriately transformed
real-time neural data. At each classification, a corresponding action
is performed.

	Variables

	
	classifier (function) – a function which performs classification on the
most recent data (transformed as needed). returns classification.

	transformer (function) – function which takes in the most recent data (buffer)
and returns the transformed input the classifer expects.

	action (function) – a function which takes in the classification, and
performs some action.

	calibrator (function) – a function which is run on startup to perform
calibration using stream; returns calibration_info
which is used by classifier and transformer.

	calibration_info – the result of the calibrator, if applicable.

	buffer_length (int) – the length of the buffer; specifies the
number of samples of the signal to keep for classification.

	brain_state – the most recent brain state classification.

	
__init__(classifier, transformer=None, action=<built-in function print>, calibrator=None)

	Initialize a generic BCI object.

See class documentation for infromation about the class itself.

	Parameters

	
	classifier (function) – a function which performs classification on the
most recent data (transformed as needed). returns class.

	transformer (function) – function which takes in the most recent data (buffer)
and returns the transformed input the classifer expects.

	action (function) – a function which takes in the classification, and
performs some action.

	calibrator (function) – a function which is run on startup to perform
calibration using stream; returns calibration_info
which is used by classifier and transformer.

	
calibrate(stream)

	runs the calibrator.

return value of calibrator is stored in the object’s
calibration_info which the transformer and classifier
can use at run-time of BCI.

	Parameters

	stream (neurol.streams object) – neurol stream for brain data.

	
run(stream)

	Runs the defined Brain-Computer Interface.

Internally manages a buffer of the signal given in stream and
continuously performs classification on appropriately transformed
real-time neural data. At each classification, a corresponding action
is performed.

	Parameters

	stream (neurol.streams object) – neurol stream for brain data.

	
test_update_rate(stream, test_length=10, perform_action=True)

	Returns the rate at which the BCI is able to make a classification
and perform its action.

	Parameters

	
	stream (neurol.streams object) – neurol stream for brain data.

	test_length (float) – how long to run the test for in seconds.

	perform_action (bool) – whether to perform the action or skip it.

	
class neurol.BCI.fsm_BCI(classifier, transformer=None, action=<built-in function print>, calibrator=None)

	Bases: neurol.BCI.generic_BCI

Implements a Finite-State-Machine-inspired Brain-Computer Interface.

Classification of brain-state is not only dependent on the transformed
real-time brain signal, but also the previous brain state.

Internally manages a buffer of the signal given in stream and
continuously performs classification on appropriately transformed
real-time neural data. At each classification, a corresponding action
is performed.

	Variables

	
	classifier (function) – a function which performs classification on the
most recent data (transformed as needed). returns classification.

	transformer (function) – function which takes in the most recent data (buffer)
and returns the transformed input the classifer expects.

	action (function) – a function which takes in the classification, and
performs some action.

	calibrator (function) – a function which is run on startup to perform
calibration using stream; returns calibration_info
which is used by classifier and transformer.

	calibration_info – the result of the calibrator, if applicable.

	buffer_length (int) – the length of the buffer; specifies the
number of samples of the signal to keep for classification.

	brain_state – the most recent brain state classification.

	
class neurol.BCI.retentive_BCI(classifier, transformer=None, action=<built-in function print>, calibrator=None, memory_length=10)

	Bases: neurol.BCI.generic_BCI

Implements a Brain-Computer Interface with memory of past brain states.

Classification of brain-state is not only dependent on the transformed
real-time brain signal, but also the finite list of previous brain states.

Internally manages a buffer of the signal given in stream and
continuously performs classification on appropriately transformed
real-time neural data. At each classification, a corresponding action
is performed.

	Variables

	
	classifier (function) – a function which performs classification on the
most recent data (transformed as needed). returns classification.

	transformer (function) – function which takes in the most recent data (buffer)
and returns the transformed input the classifer expects.

	action (function) – a function which takes in the classification, and
performs some action.

	calibrator (function) – a function which is run on startup to perform
calibration using stream; returns calibration_info
which is used by classifier and transformer.

	calibration_info – the result of the calibrator, if applicable.

	brain_state – the most recent brain state classification.

	memory_length (int) – number of brain states into the past to remember.

	past_states – a list of the past classifications of brain states.
used in next classification. length is memory_length.

	
__init__(classifier, transformer=None, action=<built-in function print>, calibrator=None, memory_length=10)

	Initialize a retentive BCI object.

See class documentation for infromation about the class itself.

	Parameters

	
	classifier (function) – a function which performs classification on the
most recent data (transformed as needed). returns class.

	transformer (function) – function which takes in the most recent data (buffer)
and returns the transformed input the classifer expects.

	action (function) – a function which takes in the classification, and
performs some action.

	calibrator (function) – a function which is run on startup to perform
calibration using stream; returns calibration_info
which is used by classifier and transformer.

	memory_length (int) – number of brain states to remember into past.

	
class neurol.BCI.automl_BCI(model, epoch_len, n_states, transformer=None, action=<built-in function print>)

	Bases: neurol.BCI.generic_BCI

Implements a Brain-Computer Interface which builds its own classifier
by training a machine learning model in the calibration stage.

At calibration, data is recorded for some number of brain-states
then a machine-learning classifier is trained on the transformed data.

Internally manages a buffer of the signal given in stream and
continuously performs classification on appropriately transformed
real-time neural data. At each classification, a corresponding action
is performed.

	Variables

	
	model – a model object which has fit(X, y) and predict(X) methods.

	classifier (function) – the model’s predictor after training.
accepts transformed data and returns classification.

	transformer (function) – function which takes in the most recent data (buffer)
and returns the transformed input the classifer expects.

	action (function) – a function which takes in the classification, and
performs some action.

	brain_state – the most recent brain state classification.

	
__init__(model, epoch_len, n_states, transformer=None, action=<built-in function print>)

	Initialize an autoML BCI object.

See class documentation for infromation about the class itself.

	Parameters

	
	model – a model object which has fit(X, y) and predict(X) methods.

	epoch_len (int) – the length of the epochs (in # of samples)
used in training and prediction by the model.

	n_states (int) – the number of brain states being classified.

	transformer (function, optional) – function which takes in the
most recent data (buffer) and returns the transformed input
the classifer expects. Defaults to None.

	action (function, optional) – a function which takes in the
classification, and performs some action. Defaults to print.

	
build_model(stream, recording_length)

	records brain signal

	Parameters

	
	stream (neurol.streams object) – neurol stream for brain data.

	recording_length (float) – length in seconds for the recording of
each brain state to be used for training the model.

	
run(stream)

	Runs the defined Brain-Computer Interface.

Internally manages a buffer of the signal given in stream and
continuously performs classification on appropriately transformed
real-time neural data. At each classification, a corresponding action
is performed.

	Parameters

	stream (neurol.streams object) – neurol stream for brain data.

neurol.BCI_tools module

Module including utility functions for creating classifier’s,
transfromer’s, and calibrator’s for use in the BCI module.

	
neurol.BCI_tools.ensemble_transform(signal, epoch_len=None, channels=None, device=None, transformers=None, filter_=False, sampling_rate=None, filter_kwargs=None)

	Ensemble transform function. Takes in buffer as input. Extracts the
appropriate channels and samples, performs filtering, and transforms.

	Parameters

	
	signal (np.ndarray) – signal of shape: [n_samples, n_channels]

	epoch_len (int) – length of epoch expected by classifier (# of samples).
optional.

	channels (list of str or int) – list of channels expected by classifier.
See get_channels. optional.

	device (str) – device name. used to get channels and sampling_rate.

	filter (boolean) – whether to perform filtering

	filter_kwargs (dict) – dictionary of kwargs passed to filtering function.
See biosppy.signals.tools.filter_signal. by default,
an order 8 bandpass butter filter is performed between 2Hz and 40Hz.

	
neurol.BCI_tools.filter_signal(signal, sampling_rate, ftype='butter', band='bandpass', frequency=(2, 40), order=8, **filter_kwargs)

	applies frequency-based filters to a given signal.

	Parameters

	
	signal (np.ndarray) – signal of shape [n_samples, n_channels]

	sampling_rate (float) – sampling rate of signal.

	ftype (str, optional) – type of filter.
one of ‘FIR’, ‘butter’, ‘chebby1’, ‘chebby2’, ‘ellip’, or ‘bessel’.
Defaults to ‘butter’.

	band (str, optional) – band type.
one of ‘lowpass’, ‘highpass’, ‘bandpass’, or ‘bandstop’.
Defaults to ‘bandpass’.

	frequency (float or tuple of floats, optional) – cutoff frequencies.
single if ‘lowpass’/’highpass’, tuple if ‘bandpass’/’bandstop’.
Defaults to (2,40).

	order (int, optional) – order of filter. Defaults to 8.

	**filter_kwargs – keyword args for biosppy.signals.tools.filter_signal

	Returns

	filtered signal

	Return type

	[np.ndarray]

	
neurol.BCI_tools.band_power_calibrator(stream, channels, device, bands, percentile=50, recording_length=10, epoch_len=1, inter_window_interval=0.2)

	Calibrator for generic_BCI.BCI which computes a given percentile for
the power of each frequency band across epochs channel-wise. Useful for
calibrating a concentration-based BCI.

	Parameters

	
	stream (neurol.streams object) – neurol stream for brain data.

	channels – array of strings with the names of channels to use.

	device (str) – device name for use by classification_tools

	bands – the frequency bands to get power features for.
‘all’: all of [‘theta’, ‘alpha_low’, ‘alpha_high’, ‘beta’, ‘gamma’]
otherwise an array of strings of the desired bands.

	percentile – the percentile of power distribution across epochs to
return for each band.

	recording_length (float) – length of recording to use for calibration
in seconds.

	epoch_len (float) – the length of each epoch in seconds.

	inter_window_interval (float) – interval between each window/epoch
in seconds (measured start to start)

	Returns

	array of shape [n_bands, n_channels] of the percentile
of the power of each band

	Return type

	clb_info

	
neurol.BCI_tools.band_power_transformer(signal, sampling_rate, bands)

	Transformer for generic_BCI.BCI which chooses channels, epochs, and
gets power features on some choice of bands.

	Parameters

	
	signal (np.ndarray) – most recent stream data.
shape: [n_samples, n_channels]

	sampling_rate (float) – sampling_rate of signal.

	bands – the frequency bands to get power features for.
‘all’: all of [‘theta’, ‘alpha_low’, ‘alpha_high’, ‘beta’, ‘gamma’]
otherwise a list of strings of the desired bands.

	Returns

	array of shape [n_bands, n_channels] of the
channel-wise power of each band over the epoch.

	Return type

	transformed_signal

neurol.plot module

Module for plotting stream of neural data.
Includes time domain, fourrier transform, and spectrogram live plots.

	
neurol.plot.plot(stream, channels=None, w_size=(1920, 1080))

	plots data stream. one row per channel.

	Parameters

	
	stream (neurol.streams object) – neurol stream for a data source.

	channels – channels to plot. list/tuple of channel indices,
or dict with indices as keys and names as values.
Defaults to None (plots all channels w/o names).

	w_size (tuple, optional) – initial size of window in pixels.
Defaults to (1920, 1080).

	
neurol.plot.plot_fft(stream, channels=None, w_size=(1920, 1080))

	plots fourrier transform of data stream from inlet. one row per channel.

	Parameters

	
	stream (neurol.streams object) – neurol stream for a data source.

	channels – channels to plot. list/tuple of channel indices,
or dict with indices as keys and names as values.
Defaults to None (plots all channels w/o names).

	w_size (tuple, optional) – initial size of window in pixels.
Defaults to (1920, 1080).

	
neurol.plot.plot_spectrogram(stream, channels=None, w_size=(1920, 1080))

	plots spectrogram of data stream from inlet. one row per channel.

	Parameters

	
	stream (neurol.streams object) – neurol stream for a data source.

	channels – channels to plot. list/tuple of channel indices,
or dict with indices as keys and names as values.
Defaults to None (plots all channels w/o names).

	w_size (tuple, optional) – initial size of window in pixels.
Defaults to (1920, 1080).

neurol.connect_device module

Module containing functions for quickly connecting to BCI-related streaming
devices.

	
neurol.connect_device.connect_muse()

	connects to any available muse headset.
returns ble2lsl.ble2lsl.Streamer object.

	
neurol.connect_device.get_lsl_EEG_inlets()

	resolves all EEG lsl streams and returns their inlets in an array.

neurol.streams

module for handling streams of data from different sources

	
class neurol.streams.lsl_stream(pylsl_inlet, buffer_length=2048)

	Bases: object

A generalized stream object for an lsl data source.

Manages a buffer of data and makes it available.
Used by neurol.BCI and neurol.plot.

	
__init__(pylsl_inlet, buffer_length=2048)

	initialize an lsl_stream object.

	Parameters

	
	pylsl_inlet (pylsl.pylsl.StreamInlet) – inlet of connected lsl device

	buffer_length (int, optional) – length of data buffer.
Defaults to 2048.

	
get_data(max_samples=2048)

	gets latest data.

	
record_data(duration)

	records from stream for some duration of time.

	Parameters

	duration (float) – length of recording in seconds.

	
update_buffer()

	updates buffer with most recent available data.

	Returns

	True if new data available, False if not.

	Return type

	[bool]

	
close()

	closes the pylsl inlet stream

neurol.models.classification_tools module

Module containing functions for performing classification, via machine learning
models or otherwise, related to Brain-Computer Interface applications.

	
neurol.models.classification_tools.get_channels(signal, channels, device=None)

	Returns a signal with only the desired channels.

	Parameters

	
	signal (np.ndarray) – a signal of shape [n_samples, n_channels]

	channels (array) – str names or int indices of the desired channels.
returned in given order.

	device (str) – name of the device. Optional.

	Returns

	numpy array of signal with shape [n_channels, n_desired_channels].
Includes only the selected channels in the order given.

	
neurol.models.classification_tools.softmax_predict(input_, predictor, thresh=0.5)

	Consolidates a softmax prediction to a one-hot encoded prediction.

	Parameters

	
	input – the input taken by the predictor

	predictor – function which returns a softmax prediction given an input_

	thresh – the threshold for a positive prediction for a particular class.

	
neurol.models.classification_tools.encode_ohe_prediction(prediction)

	Returns the index number of the positive class in a
one-hot encoded prediction.

	
neurol.models.classification_tools.decode_prediction(prediction, decode_dict)

	Returns a more intelligible reading of the prediction
based on the given decode_dict

	
neurol.models.classification_tools.threshold_clf(features, threshold, clf_consolidator='any')

	Classifies given features based on a given threshold.

	Parameters

	
	features – an array of numerical features to classify

	threshold – threshold for classification. A single number, or an
array corresponding to features for element-wise comparison.

	clf_consolidator – method of consolidating element-wise comparisons
with threshold into a single classification.

’any’: positive class if any features passes the threshold
‘all’: positive class only if all features pass threshold
‘sum’: a count of the number of features which pass the threshold
function: a custom function which takes in an array of booleans

and returns a consolidated classification

	Returns

	classification for the given features. Return type clf_consolidator.

neurol.models.data_exploration module

Module containing functions to study and analyze neural signals,
especially to provide insights for building machine learning models
to perform classification relevant to Brain-Computer Interface applications.

	
neurol.models.data_exploration.plot_signal(signal, sampling_rate, signal_type=None, ch_names=None, event_timestamps=None, **plt_kwargs)

	Plots signal.

	Parameters

	
	signal – signal as array of shape [n_samples, n_channels].

	sr (float) – sampling rate in samples per second.

	signal_type – (optional) gives a title for the y-axis.

	ch_names – (optional) array of names for each channel (used for legend).

	event_timestamps – (optional) 1-D array of times at which an
event/stimulus occured.

	**plt_kwargs – matplotlib keyword args

	
neurol.models.data_exploration.plot_grid(signals, num_signals=None, sampling_rate=1, cols=4, fig_size=(10, 6), sharey=True, sharex=True, random=True, fig_axes=None, show=True)

	Plot an (optionally random) set of signals [epochs] in a grid
from a larger array of given signals.

	Parameters

	
	signals – array of signals to plot from (num_signals, num_samples).

	num_signals (int) – the number of siganls to plot.

	sampling_rate (float) – sampling rate of signals.

	cols (int) – the number of columns in the grid.

	fig_size – tuple (x,y) of figure size in inches.

	sharey (bool) – whether to share scale on y-axis (see matplotlib).

	sharex (bool) – whether to share scale on x-axis (see matplotlib).

	random (bool) – whether to choose signals randomly or just use
the first num_signals.

	fig_axes – optionally, an existing tuple of (fig,axes) to plot on
(see matplotlib) rather creating new one.

	show (bool) – whether to show plot inline.

	Returns

	
	matplotlib figure and axes with sample of signals

	plotted in a grid

	Return type

	fig, axes

	
neurol.models.data_exploration.stim_triggered_average(signal, sampling_rate, timestamps, duration_before, duration_after, plot=False)

	Inspired by the computational neuroscience concept of the
spike-triggered average, this function computes the average
signal characteristic around known events.

	Parameters

	
	signal – signal as an array of shape [samples, channels].

	sr (float) – sampling rate of the signal.

	timestamps – array of floats containing the timestamps for each event.

	duration_before – the duration to be considered before each event.

	duration_after – the duration to be considered after each event.

	plot (optional) – whether or not to plot the stim_triggered_average.

	Returns

	average signal characteristic around event.
relative_time: relative time of each sample in stim_triggered_average

with respect to event.

	Return type

	stim_triggered_average

	
neurol.models.data_exploration.plot_PCA(epochs, sampling_rate=1, n_components=None, return_PCA=False, PCA_kwargs=None, plot_grid_kwargs=None)

	performs principal component analysis and plots principal components
of epochs of a signal.

	Parameters

	
	epochs – array of epochs (n_epochs, n_samples).

	sr (float) – sampling rate.

	num_components (int) – number of components to use.
If none is passed, all are used.

	return_PCA (bool) – whether to return the independent components.

	PCA_kwargs (dict) – dictionary containing kwargs for PCA function
(see scikit-learn).

	plot_grid_kwargs (dict) – dictionary containing kwargs for
plot_grid function.

	
neurol.models.data_exploration.plot_ICA(epochs, sampling_rate=1, n_components=None, return_ICA=False, FastICA_kwargs=None, plot_grid_kwargs=None)

	performs independent component analysis and plots independent components of
epochs of a signal.

	Parameters

	
	epochs – array of epochs (n_epochs, n_samples).

	sr (float) – sampling rate.

	num_components (int) – number of components to use.
If none is passed, all are used.

	return_ICA (bool) – whether to return the independent components.

	FastICA_kwargs (dict) – dictionary containing kwargs for FastICA
function (see scikit-learn).

	plot_grid_kwargs (dict) – dictionary containing kwargs for
plot_grid function.

neurol.models.model_tools module

Module for managing the models which come pre-packaged with neurol.
Includes functionality for importing and using the models.

	
neurol.models.model_tools.get_model(model_name)

	gets the specified trained model.

	Parameters

	model_name (str) – name of model.
See documentation for list of available models.

	Returns

	trained model.of

	Return type

	model

	
neurol.models.model_tools.get_predictor(model_name)

	gets the predictor for the specified model.

	Parameters

	model_name (str) – name of model.
See documentation for list of available models.

	Returns

	predictor of trained model.

	Return type

	predictor

neurol.models.preprocessing module

Module containing functions for the preparation of neural data for use with
with BCI-related models.

	
neurol.models.preprocessing.epoch(signal, window_size, inter_window_interval)

	Creates overlapping windows/epochs of EEG data from a single recording.

	Parameters

	
	signal – array of timeseries EEG data of shape [n_samples, n_channels]

	window_size (int) – desired size of each window in number of samples

	inter_window_interval (int) – interval between each window in number of
samples (measured start to start)

	Returns

	numpy array object with the epochs along its first dimension

	
neurol.models.preprocessing.labels_from_timestamps(timestamps, sampling_rate, length)

	takes an array containing timestamps (as floats) and
returns a labels array of size ‘length’ where each index
corresponding to a timestamp via the ‘samplingRate’.

	Parameters

	
	timestamps – an array of floats containing the timestamps for each

	event (units matching sampling_rate) –

	sampling_rate (float) – the sampling rate of the EEG data.

	length (int) – the number of samples of the corresponing EEG recording.

	Returns

	an integer array of size ‘length’ with a ‘1’ at each time index where a
corresponding timestamp exists, and a ‘0’ otherwise.

	
neurol.models.preprocessing.label_epochs(labels, window_size, inter_window_interval, label_method)

	create labels for individual eoicgs of EEG data based on the
label_method.

	Parameters

	
	labels – an integer array indicating a class for each sample measurement

	window_size (int) – size of each window in number of samples
(matching window_size in epoched data)

	inter_window_interval (int) – interval between each window in number of
samples (matching inter_window_interval in epoched data)

	label_method (str/func) – method of consolidating labels contained in
epoch into a single label.

’containment’: whether a positive label occurs in the epoch,
‘count’: the count of positive labels in the epoch,
‘mode’: the most common label in the epoch
func: func_name(epoched_labels) outputs label of epoched_labels

	Returns

	a numpy array with a label correponding to each epoch

	
neurol.models.preprocessing.label_epochs_from_timestamps(timestamps, sampling_rate, length, window_size, inter_window_interval, label_method='containment')

	Directly creates labels for individual windows of EEG data from
timestamps of events.

	Parameters

	
	timestamps – an array of floats containing the timestamps
for each event (units matching sampling_rate).

	sampling_rate (float) – sampling rate of the recording.

	length (int) – the number of samples of the corresponing EEG recording.

	window_size (int) – size of each window in number of samples
(matches window_size in epoched data)

	inter_window_interval (int) – interval between each window in number of
samples (matches inter_window_interval in epoched data)

	label_method (str/func) – method of consolidating labels contained in
epoch into a single label.

’containment’: whether a positive label occurs in the epoch,
‘count’: the count of positive labels in the epoch,
‘mode’: the most common label in the epoch
func: func_name(epoched_labels) outputs label of epoched_labels

	Returns

	an array with a label correponding to each window

	
neurol.models.preprocessing.epoch_and_label(data, sampling_rate, timestamps, window_size, inter_window_interval, label_method='containment')

	Epochs a signal (single EEG recording) and labels each epoch using
timestamps of events and a chosen labelling method.

	Parameters

	
	data – array of timeseries EEG data of shape [n_samples, n_channels]

	timestamps – an array of floats containing the timestamps for each event
in units of time.

	sampling_rate (float) – the sampling rate of the EEG data.

	window_size (float) – desired size of each window in units of time.

	inter_window_interval (float) – interval between each window
in units of time (measured start to start)

	label_method (str/func) – method of consolidating labels contained in
epoch into a single label.

’containment’: whether a positive label occurs in the epoch,
‘count’: the count of positive labels in the epoch,
‘mode’: the most common label in the epoch
func: func_name(epoched_labels) outputs label of epoched_labels

	Returns

	array of epochs with shape [n_epochs, n_channels]
labels: array of labels corresponding to each epoch of shape [n_epochs,]

	Return type

	epochs

	
neurol.models.preprocessing.compute_signal_std(signal, corrupt_intervals=None, sampling_rate=1)

	Computes and returns the standard deviation of a signal channel-wise
while avoiding corrupt intervals

	Parameters

	
	signal – signal of shape [n_samples, n_channels]

	corrupt_intervals – an array of 2-tuples indicating the start and
end time of the corrupt interval (units of time)

	sampling_rate – the sampling rate in units of samples/unit of time

	Returns

	standard deviation of signal channel-wise of shape [1, n_channels]

	
neurol.models.preprocessing.split_corrupt_signal(signal, corrupt_intervals, sampling_rate=1)

	Splits a signal with corrupt intervals and returns array of signals
with the corrupt intervals filtered out. This is useful for treating
each non_corrupt segment as a seperate signal to ensure continuity
within a single signal.

	Parameters

	
	signal – signal of shape [n_samples, n_channels]

	corrupt_intervals – an array of 2-tuples indicating the start and
end time of the corrupt interval (units of time)

	sampling_rate – the sampling rate in units of samples/unit of time

	Returns

	array of non_corrupt signals of shape [n_signal, n_samples, n_channels]

	
neurol.models.preprocessing.epoch_band_features(epoch_, sampling_rate, bands='all', return_dict=True)

	Computes power features of EEG frequency bands over the epoch channel-wise.

	Parameters

	
	epoch – a single epoch of shape [n_samples, n_channels]

	sampling_rate – the sampling rate of the signal in units of samples/sec

	bands – the requested frequency bands to get power features for.
‘all’: all of [‘theta’, ‘alpha_low’, ‘alpha_high’, ‘beta’, ‘gamma’]
otherwise an array of strings of the desired bands.

	return_dict (bool) – returns band_features in the form of a dictionary
if True, else returns as numpy array in order of bands

	Returns

	a dictionary of arrays of shape [1, n_channels] containing the
power features over each frequency band per channel.

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 neurol	

 	
 	
 neurol.BCI	

 	
 	
 neurol.BCI_tools	

 	
 	
 neurol.connect_device	

 	
 	
 neurol.models	

 	
 	
 neurol.models.classification_tools	

 	
 	
 neurol.models.data_exploration	

 	
 	
 neurol.models.model_tools	

 	
 	
 neurol.models.preprocessing	

 	
 	
 neurol.plot	

 	
 	
 neurol.streams	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | N
 | P
 | R
 | S
 | T
 | U

_

 	
 	__init__() (neurol.BCI.automl_BCI method), [1]

 	(neurol.BCI.generic_BCI method), [1]

 	(neurol.BCI.retentive_BCI method), [1]

 	(neurol.streams.lsl_stream method), [1]

A

 	
 	automl_BCI (class in neurol.BCI), [1]

B

 	
 	band_power_calibrator() (in module neurol.BCI_tools), [1]

 	
 	band_power_transformer() (in module neurol.BCI_tools), [1]

 	build_model() (neurol.BCI.automl_BCI method), [1]

C

 	
 	calibrate() (neurol.BCI.generic_BCI method), [1]

 	close() (neurol.streams.lsl_stream method), [1]

 	
 	compute_signal_std() (in module neurol.models.preprocessing), [1]

 	connect_muse() (in module neurol.connect_device), [1]

D

 	
 	decode_prediction() (in module neurol.models.classification_tools), [1]

E

 	
 	encode_ohe_prediction() (in module neurol.models.classification_tools), [1]

 	ensemble_transform() (in module neurol.BCI_tools), [1]

 	
 	epoch() (in module neurol.models.preprocessing), [1]

 	epoch_and_label() (in module neurol.models.preprocessing), [1]

 	epoch_band_features() (in module neurol.models.preprocessing), [1]

F

 	
 	filter_signal() (in module neurol.BCI_tools), [1]

 	
 	fsm_BCI (class in neurol.BCI), [1]

G

 	
 	generic_BCI (class in neurol.BCI), [1]

 	get_channels() (in module neurol.models.classification_tools), [1]

 	get_data() (neurol.streams.lsl_stream method), [1]

 	
 	get_lsl_EEG_inlets() (in module neurol.connect_device), [1]

 	get_model() (in module neurol.models.model_tools), [1]

 	get_predictor() (in module neurol.models.model_tools), [1]

L

 	
 	label_epochs() (in module neurol.models.preprocessing), [1]

 	label_epochs_from_timestamps() (in module neurol.models.preprocessing), [1]

 	
 	labels_from_timestamps() (in module neurol.models.preprocessing), [1]

 	lsl_stream (class in neurol.streams), [1]

N

 	
 	neurol (module)

 	neurol.BCI (module), [1]

 	neurol.BCI_tools (module), [1]

 	neurol.connect_device (module), [1]

 	neurol.models (module)

 	
 	neurol.models.classification_tools (module), [1]

 	neurol.models.data_exploration (module), [1]

 	neurol.models.model_tools (module), [1]

 	neurol.models.preprocessing (module), [1]

 	neurol.plot (module), [1]

 	neurol.streams (module), [1]

P

 	
 	plot() (in module neurol.plot), [1]

 	plot_fft() (in module neurol.plot), [1]

 	plot_grid() (in module neurol.models.data_exploration), [1]

 	
 	plot_ICA() (in module neurol.models.data_exploration), [1]

 	plot_PCA() (in module neurol.models.data_exploration), [1]

 	plot_signal() (in module neurol.models.data_exploration), [1]

 	plot_spectrogram() (in module neurol.plot), [1]

R

 	
 	record_data() (neurol.streams.lsl_stream method), [1]

 	retentive_BCI (class in neurol.BCI), [1]

 	
 	run() (neurol.BCI.automl_BCI method), [1]

 	(neurol.BCI.generic_BCI method), [1]

S

 	
 	softmax_predict() (in module neurol.models.classification_tools), [1]

 	
 	split_corrupt_signal() (in module neurol.models.preprocessing), [1]

 	stim_triggered_average() (in module neurol.models.data_exploration), [1]

T

 	
 	test_update_rate() (neurol.BCI.generic_BCI method), [1]

 	
 	threshold_clf() (in module neurol.models.classification_tools), [1]

U

 	
 	update_buffer() (neurol.streams.lsl_stream method), [1]

neurol

	neurol package
	Subpackages
	neurol.models package
	Submodules

	neurol.models.classification_tools module

	neurol.models.data_exploration module

	neurol.models.model_tools module

	neurol.models.preprocessing module

	Module contents

	Submodules

	neurol.BCI module

	neurol.BCI_tools module

	neurol.connect_device module

	neurol.plot module

	neurol.streams module

	Module contents

neurol.models package

Submodules

neurol.models.classification_tools module

Module containing functions for performing classification, via machine learning
models or otherwise, related to Brain-Computer Interface applications.

	
neurol.models.classification_tools.get_channels(signal, channels, device=None)

	Returns a signal with only the desired channels.

	Parameters

	
	signal (np.ndarray) – a signal of shape [n_samples, n_channels]

	channels (array) – str names or int indices of the desired channels.
returned in given order.

	device (str) – name of the device. Optional.

	Returns

	numpy array of signal with shape [n_channels, n_desired_channels].
Includes only the selected channels in the order given.

	
neurol.models.classification_tools.softmax_predict(input_, predictor, thresh=0.5)

	Consolidates a softmax prediction to a one-hot encoded prediction.

	Parameters

	
	input – the input taken by the predictor

	predictor – function which returns a softmax prediction given an input_

	thresh – the threshold for a positive prediction for a particular class.

	
neurol.models.classification_tools.encode_ohe_prediction(prediction)

	Returns the index number of the positive class in a
one-hot encoded prediction.

	
neurol.models.classification_tools.decode_prediction(prediction, decode_dict)

	Returns a more intelligible reading of the prediction
based on the given decode_dict

	
neurol.models.classification_tools.threshold_clf(features, threshold, clf_consolidator='any')

	Classifies given features based on a given threshold.

	Parameters

	
	features – an array of numerical features to classify

	threshold – threshold for classification. A single number, or an
array corresponding to features for element-wise comparison.

	clf_consolidator – method of consolidating element-wise comparisons
with threshold into a single classification.

’any’: positive class if any features passes the threshold
‘all’: positive class only if all features pass threshold
‘sum’: a count of the number of features which pass the threshold
function: a custom function which takes in an array of booleans

and returns a consolidated classification

	Returns

	classification for the given features. Return type clf_consolidator.

neurol.models.data_exploration module

Module containing functions to study and analyze neural signals,
especially to provide insights for building machine learning models
to perform classification relevant to Brain-Computer Interface applications.

	
neurol.models.data_exploration.plot_signal(signal, sampling_rate, signal_type=None, ch_names=None, event_timestamps=None, **plt_kwargs)

	Plots signal.

	Parameters

	
	signal – signal as array of shape [n_samples, n_channels].

	sr (float) – sampling rate in samples per second.

	signal_type – (optional) gives a title for the y-axis.

	ch_names – (optional) array of names for each channel (used for legend).

	event_timestamps – (optional) 1-D array of times at which an
event/stimulus occured.

	**plt_kwargs – matplotlib keyword args

	
neurol.models.data_exploration.plot_grid(signals, num_signals=None, sampling_rate=1, cols=4, fig_size=(10, 6), sharey=True, sharex=True, random=True, fig_axes=None, show=True)

	Plot an (optionally random) set of signals [epochs] in a grid
from a larger array of given signals.

	Parameters

	
	signals – array of signals to plot from (num_signals, num_samples).

	num_signals (int) – the number of siganls to plot.

	sampling_rate (float) – sampling rate of signals.

	cols (int) – the number of columns in the grid.

	fig_size – tuple (x,y) of figure size in inches.

	sharey (bool) – whether to share scale on y-axis (see matplotlib).

	sharex (bool) – whether to share scale on x-axis (see matplotlib).

	random (bool) – whether to choose signals randomly or just use
the first num_signals.

	fig_axes – optionally, an existing tuple of (fig,axes) to plot on
(see matplotlib) rather creating new one.

	show (bool) – whether to show plot inline.

	Returns

	
	matplotlib figure and axes with sample of signals

	plotted in a grid

	Return type

	fig, axes

	
neurol.models.data_exploration.stim_triggered_average(signal, sampling_rate, timestamps, duration_before, duration_after, plot=False)

	Inspired by the computational neuroscience concept of the
spike-triggered average, this function computes the average
signal characteristic around known events.

	Parameters

	
	signal – signal as an array of shape [samples, channels].

	sr (float) – sampling rate of the signal.

	timestamps – array of floats containing the timestamps for each event.

	duration_before – the duration to be considered before each event.

	duration_after – the duration to be considered after each event.

	plot (optional) – whether or not to plot the stim_triggered_average.

	Returns

	average signal characteristic around event.
relative_time: relative time of each sample in stim_triggered_average

with respect to event.

	Return type

	stim_triggered_average

	
neurol.models.data_exploration.plot_PCA(epochs, sampling_rate=1, n_components=None, return_PCA=False, PCA_kwargs=None, plot_grid_kwargs=None)

	performs principal component analysis and plots principal components
of epochs of a signal.

	Parameters

	
	epochs – array of epochs (n_epochs, n_samples).

	sr (float) – sampling rate.

	num_components (int) – number of components to use.
If none is passed, all are used.

	return_PCA (bool) – whether to return the independent components.

	PCA_kwargs (dict) – dictionary containing kwargs for PCA function
(see scikit-learn).

	plot_grid_kwargs (dict) – dictionary containing kwargs for
plot_grid function.

	
neurol.models.data_exploration.plot_ICA(epochs, sampling_rate=1, n_components=None, return_ICA=False, FastICA_kwargs=None, plot_grid_kwargs=None)

	performs independent component analysis and plots independent components of
epochs of a signal.

	Parameters

	
	epochs – array of epochs (n_epochs, n_samples).

	sr (float) – sampling rate.

	num_components (int) – number of components to use.
If none is passed, all are used.

	return_ICA (bool) – whether to return the independent components.

	FastICA_kwargs (dict) – dictionary containing kwargs for FastICA
function (see scikit-learn).

	plot_grid_kwargs (dict) – dictionary containing kwargs for
plot_grid function.

neurol.models.model_tools module

Module for managing the models which come pre-packaged with neurol.
Includes functionality for importing and using the models.

	
neurol.models.model_tools.get_model(model_name)

	gets the specified trained model.

	Parameters

	model_name (str) – name of model.
See documentation for list of available models.

	Returns

	trained model.of

	Return type

	model

	
neurol.models.model_tools.get_predictor(model_name)

	gets the predictor for the specified model.

	Parameters

	model_name (str) – name of model.
See documentation for list of available models.

	Returns

	predictor of trained model.

	Return type

	predictor

neurol.models.preprocessing module

Module containing functions for the preparation of neural data for use with
with BCI-related models.

	
neurol.models.preprocessing.epoch(signal, window_size, inter_window_interval)

	Creates overlapping windows/epochs of EEG data from a single recording.

	Parameters

	
	signal – array of timeseries EEG data of shape [n_samples, n_channels]

	window_size (int) – desired size of each window in number of samples

	inter_window_interval (int) – interval between each window in number of
samples (measured start to start)

	Returns

	numpy array object with the epochs along its first dimension

	
neurol.models.preprocessing.labels_from_timestamps(timestamps, sampling_rate, length)

	takes an array containing timestamps (as floats) and
returns a labels array of size ‘length’ where each index
corresponding to a timestamp via the ‘samplingRate’.

	Parameters

	
	timestamps – an array of floats containing the timestamps for each

	event (units matching sampling_rate) –

	sampling_rate (float) – the sampling rate of the EEG data.

	length (int) – the number of samples of the corresponing EEG recording.

	Returns

	an integer array of size ‘length’ with a ‘1’ at each time index where a
corresponding timestamp exists, and a ‘0’ otherwise.

	
neurol.models.preprocessing.label_epochs(labels, window_size, inter_window_interval, label_method)

	create labels for individual eoicgs of EEG data based on the
label_method.

	Parameters

	
	labels – an integer array indicating a class for each sample measurement

	window_size (int) – size of each window in number of samples
(matching window_size in epoched data)

	inter_window_interval (int) – interval between each window in number of
samples (matching inter_window_interval in epoched data)

	label_method (str/func) – method of consolidating labels contained in
epoch into a single label.

’containment’: whether a positive label occurs in the epoch,
‘count’: the count of positive labels in the epoch,
‘mode’: the most common label in the epoch
func: func_name(epoched_labels) outputs label of epoched_labels

	Returns

	a numpy array with a label correponding to each epoch

	
neurol.models.preprocessing.label_epochs_from_timestamps(timestamps, sampling_rate, length, window_size, inter_window_interval, label_method='containment')

	Directly creates labels for individual windows of EEG data from
timestamps of events.

	Parameters

	
	timestamps – an array of floats containing the timestamps
for each event (units matching sampling_rate).

	sampling_rate (float) – sampling rate of the recording.

	length (int) – the number of samples of the corresponing EEG recording.

	window_size (int) – size of each window in number of samples
(matches window_size in epoched data)

	inter_window_interval (int) – interval between each window in number of
samples (matches inter_window_interval in epoched data)

	label_method (str/func) – method of consolidating labels contained in
epoch into a single label.

’containment’: whether a positive label occurs in the epoch,
‘count’: the count of positive labels in the epoch,
‘mode’: the most common label in the epoch
func: func_name(epoched_labels) outputs label of epoched_labels

	Returns

	an array with a label correponding to each window

	
neurol.models.preprocessing.epoch_and_label(data, sampling_rate, timestamps, window_size, inter_window_interval, label_method='containment')

	Epochs a signal (single EEG recording) and labels each epoch using
timestamps of events and a chosen labelling method.

	Parameters

	
	data – array of timeseries EEG data of shape [n_samples, n_channels]

	timestamps – an array of floats containing the timestamps for each event
in units of time.

	sampling_rate (float) – the sampling rate of the EEG data.

	window_size (float) – desired size of each window in units of time.

	inter_window_interval (float) – interval between each window
in units of time (measured start to start)

	label_method (str/func) – method of consolidating labels contained in
epoch into a single label.

’containment’: whether a positive label occurs in the epoch,
‘count’: the count of positive labels in the epoch,
‘mode’: the most common label in the epoch
func: func_name(epoched_labels) outputs label of epoched_labels

	Returns

	array of epochs with shape [n_epochs, n_channels]
labels: array of labels corresponding to each epoch of shape [n_epochs,]

	Return type

	epochs

	
neurol.models.preprocessing.compute_signal_std(signal, corrupt_intervals=None, sampling_rate=1)

	Computes and returns the standard deviation of a signal channel-wise
while avoiding corrupt intervals

	Parameters

	
	signal – signal of shape [n_samples, n_channels]

	corrupt_intervals – an array of 2-tuples indicating the start and
end time of the corrupt interval (units of time)

	sampling_rate – the sampling rate in units of samples/unit of time

	Returns

	standard deviation of signal channel-wise of shape [1, n_channels]

	
neurol.models.preprocessing.split_corrupt_signal(signal, corrupt_intervals, sampling_rate=1)

	Splits a signal with corrupt intervals and returns array of signals
with the corrupt intervals filtered out. This is useful for treating
each non_corrupt segment as a seperate signal to ensure continuity
within a single signal.

	Parameters

	
	signal – signal of shape [n_samples, n_channels]

	corrupt_intervals – an array of 2-tuples indicating the start and
end time of the corrupt interval (units of time)

	sampling_rate – the sampling rate in units of samples/unit of time

	Returns

	array of non_corrupt signals of shape [n_signal, n_samples, n_channels]

	
neurol.models.preprocessing.epoch_band_features(epoch_, sampling_rate, bands='all', return_dict=True)

	Computes power features of EEG frequency bands over the epoch channel-wise.

	Parameters

	
	epoch – a single epoch of shape [n_samples, n_channels]

	sampling_rate – the sampling rate of the signal in units of samples/sec

	bands – the requested frequency bands to get power features for.
‘all’: all of [‘theta’, ‘alpha_low’, ‘alpha_high’, ‘beta’, ‘gamma’]
otherwise an array of strings of the desired bands.

	return_dict (bool) – returns band_features in the form of a dictionary
if True, else returns as numpy array in order of bands

	Returns

	a dictionary of arrays of shape [1, n_channels] containing the
power features over each frequency band per channel.

Module contents

neurol package

Subpackages

	neurol.models package
	Submodules

	neurol.models.classification_tools module

	neurol.models.data_exploration module

	neurol.models.model_tools module

	neurol.models.preprocessing module

	Module contents

Submodules

neurol.BCI module

Module implementing a general Brain-Computer Interface which manages
and incoming stream of neural data and responds to it in real-time.

	
class neurol.BCI.generic_BCI(classifier, transformer=None, action=<built-in function print>, calibrator=None)

	Bases: object

Implements a generic Brain-Computer Interface.

Internally manages a buffer of the signal given in stream and
continuously performs classification on appropriately transformed
real-time neural data. At each classification, a corresponding action
is performed.

	Variables

	
	classifier (function) – a function which performs classification on the
most recent data (transformed as needed). returns classification.

	transformer (function) – function which takes in the most recent data (buffer)
and returns the transformed input the classifer expects.

	action (function) – a function which takes in the classification, and
performs some action.

	calibrator (function) – a function which is run on startup to perform
calibration using stream; returns calibration_info
which is used by classifier and transformer.

	calibration_info – the result of the calibrator, if applicable.

	buffer_length (int) – the length of the buffer; specifies the
number of samples of the signal to keep for classification.

	brain_state – the most recent brain state classification.

	
__init__(classifier, transformer=None, action=<built-in function print>, calibrator=None)

	Initialize a generic BCI object.

See class documentation for infromation about the class itself.

	Parameters

	
	classifier (function) – a function which performs classification on the
most recent data (transformed as needed). returns class.

	transformer (function) – function which takes in the most recent data (buffer)
and returns the transformed input the classifer expects.

	action (function) – a function which takes in the classification, and
performs some action.

	calibrator (function) – a function which is run on startup to perform
calibration using stream; returns calibration_info
which is used by classifier and transformer.

	
calibrate(stream)

	runs the calibrator.

return value of calibrator is stored in the object’s
calibration_info which the transformer and classifier
can use at run-time of BCI.

	Parameters

	stream (neurol.streams object) – neurol stream for brain data.

	
run(stream)

	Runs the defined Brain-Computer Interface.

Internally manages a buffer of the signal given in stream and
continuously performs classification on appropriately transformed
real-time neural data. At each classification, a corresponding action
is performed.

	Parameters

	stream (neurol.streams object) – neurol stream for brain data.

	
test_update_rate(stream, test_length=10, perform_action=True)

	Returns the rate at which the BCI is able to make a classification
and perform its action.

	Parameters

	
	stream (neurol.streams object) – neurol stream for brain data.

	test_length (float) – how long to run the test for in seconds.

	perform_action (bool) – whether to perform the action or skip it.

	
class neurol.BCI.fsm_BCI(classifier, transformer=None, action=<built-in function print>, calibrator=None)

	Bases: neurol.BCI.generic_BCI

Implements a Finite-State-Machine-inspired Brain-Computer Interface.

Classification of brain-state is not only dependent on the transformed
real-time brain signal, but also the previous brain state.

Internally manages a buffer of the signal given in stream and
continuously performs classification on appropriately transformed
real-time neural data. At each classification, a corresponding action
is performed.

	Variables

	
	classifier (function) – a function which performs classification on the
most recent data (transformed as needed). returns classification.

	transformer (function) – function which takes in the most recent data (buffer)
and returns the transformed input the classifer expects.

	action (function) – a function which takes in the classification, and
performs some action.

	calibrator (function) – a function which is run on startup to perform
calibration using stream; returns calibration_info
which is used by classifier and transformer.

	calibration_info – the result of the calibrator, if applicable.

	buffer_length (int) – the length of the buffer; specifies the
number of samples of the signal to keep for classification.

	brain_state – the most recent brain state classification.

	
class neurol.BCI.retentive_BCI(classifier, transformer=None, action=<built-in function print>, calibrator=None, memory_length=10)

	Bases: neurol.BCI.generic_BCI

Implements a Brain-Computer Interface with memory of past brain states.

Classification of brain-state is not only dependent on the transformed
real-time brain signal, but also the finite list of previous brain states.

Internally manages a buffer of the signal given in stream and
continuously performs classification on appropriately transformed
real-time neural data. At each classification, a corresponding action
is performed.

	Variables

	
	classifier (function) – a function which performs classification on the
most recent data (transformed as needed). returns classification.

	transformer (function) – function which takes in the most recent data (buffer)
and returns the transformed input the classifer expects.

	action (function) – a function which takes in the classification, and
performs some action.

	calibrator (function) – a function which is run on startup to perform
calibration using stream; returns calibration_info
which is used by classifier and transformer.

	calibration_info – the result of the calibrator, if applicable.

	brain_state – the most recent brain state classification.

	memory_length (int) – number of brain states into the past to remember.

	past_states – a list of the past classifications of brain states.
used in next classification. length is memory_length.

	
__init__(classifier, transformer=None, action=<built-in function print>, calibrator=None, memory_length=10)

	Initialize a retentive BCI object.

See class documentation for infromation about the class itself.

	Parameters

	
	classifier (function) – a function which performs classification on the
most recent data (transformed as needed). returns class.

	transformer (function) – function which takes in the most recent data (buffer)
and returns the transformed input the classifer expects.

	action (function) – a function which takes in the classification, and
performs some action.

	calibrator (function) – a function which is run on startup to perform
calibration using stream; returns calibration_info
which is used by classifier and transformer.

	memory_length (int) – number of brain states to remember into past.

	
class neurol.BCI.automl_BCI(model, epoch_len, n_states, transformer=None, action=<built-in function print>)

	Bases: neurol.BCI.generic_BCI

Implements a Brain-Computer Interface which builds its own classifier
by training a machine learning model in the calibration stage.

At calibration, data is recorded for some number of brain-states
then a machine-learning classifier is trained on the transformed data.

Internally manages a buffer of the signal given in stream and
continuously performs classification on appropriately transformed
real-time neural data. At each classification, a corresponding action
is performed.

	Variables

	
	model – a model object which has fit(X, y) and predict(X) methods.

	classifier (function) – the model’s predictor after training.
accepts transformed data and returns classification.

	transformer (function) – function which takes in the most recent data (buffer)
and returns the transformed input the classifer expects.

	action (function) – a function which takes in the classification, and
performs some action.

	brain_state – the most recent brain state classification.

	
__init__(model, epoch_len, n_states, transformer=None, action=<built-in function print>)

	Initialize an autoML BCI object.

See class documentation for infromation about the class itself.

	Parameters

	
	model – a model object which has fit(X, y) and predict(X) methods.

	epoch_len (int) – the length of the epochs (in # of samples)
used in training and prediction by the model.

	n_states (int) – the number of brain states being classified.

	transformer (function, optional) – function which takes in the
most recent data (buffer) and returns the transformed input
the classifer expects. Defaults to None.

	action (function, optional) – a function which takes in the
classification, and performs some action. Defaults to print.

	
build_model(stream, recording_length)

	records brain signal

	Parameters

	
	stream (neurol.streams object) – neurol stream for brain data.

	recording_length (float) – length in seconds for the recording of
each brain state to be used for training the model.

	
run(stream)

	Runs the defined Brain-Computer Interface.

Internally manages a buffer of the signal given in stream and
continuously performs classification on appropriately transformed
real-time neural data. At each classification, a corresponding action
is performed.

	Parameters

	stream (neurol.streams object) – neurol stream for brain data.

neurol.BCI_tools module

Module including utility functions for creating classifier’s,
transfromer’s, and calibrator’s for use in the BCI module.

	
neurol.BCI_tools.ensemble_transform(signal, epoch_len=None, channels=None, device=None, transformers=None, filter_=False, sampling_rate=None, filter_kwargs=None)

	Ensemble transform function. Takes in buffer as input. Extracts the
appropriate channels and samples, performs filtering, and transforms.

	Parameters

	
	signal (np.ndarray) – signal of shape: [n_samples, n_channels]

	epoch_len (int) – length of epoch expected by classifier (# of samples).
optional.

	channels (list of str or int) – list of channels expected by classifier.
See get_channels. optional.

	device (str) – device name. used to get channels and sampling_rate.

	filter (boolean) – whether to perform filtering

	filter_kwargs (dict) – dictionary of kwargs passed to filtering function.
See biosppy.signals.tools.filter_signal. by default,
an order 8 bandpass butter filter is performed between 2Hz and 40Hz.

	
neurol.BCI_tools.filter_signal(signal, sampling_rate, ftype='butter', band='bandpass', frequency=(2, 40), order=8, **filter_kwargs)

	applies frequency-based filters to a given signal.

	Parameters

	
	signal (np.ndarray) – signal of shape [n_samples, n_channels]

	sampling_rate (float) – sampling rate of signal.

	ftype (str, optional) – type of filter.
one of ‘FIR’, ‘butter’, ‘chebby1’, ‘chebby2’, ‘ellip’, or ‘bessel’.
Defaults to ‘butter’.

	band (str, optional) – band type.
one of ‘lowpass’, ‘highpass’, ‘bandpass’, or ‘bandstop’.
Defaults to ‘bandpass’.

	frequency (float or tuple of floats, optional) – cutoff frequencies.
single if ‘lowpass’/’highpass’, tuple if ‘bandpass’/’bandstop’.
Defaults to (2,40).

	order (int, optional) – order of filter. Defaults to 8.

	**filter_kwargs – keyword args for biosppy.signals.tools.filter_signal

	Returns

	filtered signal

	Return type

	[np.ndarray]

	
neurol.BCI_tools.band_power_calibrator(stream, channels, device, bands, percentile=50, recording_length=10, epoch_len=1, inter_window_interval=0.2)

	Calibrator for generic_BCI.BCI which computes a given percentile for
the power of each frequency band across epochs channel-wise. Useful for
calibrating a concentration-based BCI.

	Parameters

	
	stream (neurol.streams object) – neurol stream for brain data.

	channels – array of strings with the names of channels to use.

	device (str) – device name for use by classification_tools

	bands – the frequency bands to get power features for.
‘all’: all of [‘theta’, ‘alpha_low’, ‘alpha_high’, ‘beta’, ‘gamma’]
otherwise an array of strings of the desired bands.

	percentile – the percentile of power distribution across epochs to
return for each band.

	recording_length (float) – length of recording to use for calibration
in seconds.

	epoch_len (float) – the length of each epoch in seconds.

	inter_window_interval (float) – interval between each window/epoch
in seconds (measured start to start)

	Returns

	array of shape [n_bands, n_channels] of the percentile
of the power of each band

	Return type

	clb_info

	
neurol.BCI_tools.band_power_transformer(signal, sampling_rate, bands)

	Transformer for generic_BCI.BCI which chooses channels, epochs, and
gets power features on some choice of bands.

	Parameters

	
	signal (np.ndarray) – most recent stream data.
shape: [n_samples, n_channels]

	sampling_rate (float) – sampling_rate of signal.

	bands – the frequency bands to get power features for.
‘all’: all of [‘theta’, ‘alpha_low’, ‘alpha_high’, ‘beta’, ‘gamma’]
otherwise a list of strings of the desired bands.

	Returns

	array of shape [n_bands, n_channels] of the
channel-wise power of each band over the epoch.

	Return type

	transformed_signal

neurol.connect_device module

Module containing functions for quickly connecting to BCI-related streaming
devices.

	
neurol.connect_device.connect_muse()

	connects to any available muse headset.
returns ble2lsl.ble2lsl.Streamer object.

	
neurol.connect_device.get_lsl_EEG_inlets()

	resolves all EEG lsl streams and returns their inlets in an array.

neurol.plot module

Module for plotting stream of neural data.
Includes time domain, fourrier transform, and spectrogram live plots.

	
neurol.plot.plot(stream, channels=None, w_size=(1920, 1080))

	plots data stream. one row per channel.

	Parameters

	
	stream (neurol.streams object) – neurol stream for a data source.

	channels – channels to plot. list/tuple of channel indices,
or dict with indices as keys and names as values.
Defaults to None (plots all channels w/o names).

	w_size (tuple, optional) – initial size of window in pixels.
Defaults to (1920, 1080).

	
neurol.plot.plot_fft(stream, channels=None, w_size=(1920, 1080))

	plots fourrier transform of data stream from inlet. one row per channel.

	Parameters

	
	stream (neurol.streams object) – neurol stream for a data source.

	channels – channels to plot. list/tuple of channel indices,
or dict with indices as keys and names as values.
Defaults to None (plots all channels w/o names).

	w_size (tuple, optional) – initial size of window in pixels.
Defaults to (1920, 1080).

	
neurol.plot.plot_spectrogram(stream, channels=None, w_size=(1920, 1080))

	plots spectrogram of data stream from inlet. one row per channel.

	Parameters

	
	stream (neurol.streams object) – neurol stream for a data source.

	channels – channels to plot. list/tuple of channel indices,
or dict with indices as keys and names as values.
Defaults to None (plots all channels w/o names).

	w_size (tuple, optional) – initial size of window in pixels.
Defaults to (1920, 1080).

neurol.streams module

module for handling streams of data from different sources

	
class neurol.streams.lsl_stream(pylsl_inlet, buffer_length=2048)

	Bases: object

A generalized stream object for an lsl data source.

Manages a buffer of data and makes it available.
Used by neurol.BCI and neurol.plot.

	
__init__(pylsl_inlet, buffer_length=2048)

	initialize an lsl_stream object.

	Parameters

	
	pylsl_inlet (pylsl.pylsl.StreamInlet) – inlet of connected lsl device

	buffer_length (int, optional) – length of data buffer.
Defaults to 2048.

	
get_data(max_samples=2048)

	gets latest data.

	
record_data(duration)

	records from stream for some duration of time.

	Parameters

	duration (float) – length of recording in seconds.

	
update_buffer()

	updates buffer with most recent available data.

	Returns

	True if new data available, False if not.

	Return type

	[bool]

	
close()

	closes the pylsl inlet stream

Module contents

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/neurol_360dpi.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 neurol Documentation

 		
 neurol package

 		
 neurol.models subpackage

 		
 neurol.models.classification_tools module

 		
 neurol.models.data_exploration module

 		
 neurol.models.model_tools module

 		
 neurol.models.preprocessing module

 		
 neurol.BCI module

 		
 neurol.BCI_tools module

 		
 neurol.plot module

 		
 neurol.connect_device module

 		
 neurol.streams

